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In this paper empirical Bayes methods are applied to construct selection rules for the
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1. Introduction

The family of exponential distributions has fundamental meaning in reliability theory,

survival analysis and general in the area of life time distributions. For an overview and more

details we refer to Johnson, Kotz and Balakrishnan (1994) and Balakrishnan and Basu

(1995). We consider k independent exponential populations 7r1 , . ., 7with expectations

1,... , Ok which are unknown. Let there be a control value 00. Each population iri is called

good if Oi >_ 0o and bad otherwise. We study the problem of finding all good populations.

This is a typical subset selection problem, see Gupta and Panchapakesan (1985). We

assume that the 0i are random and distributed according to the unknown distribution

Gi. Then for a given loss function the best selection rule, being the Bayes selection rule,

depends on the unknown Gi. We suppose that historical data are available and can be

included in the decision rule. This is the empirical Bayes approach due to Robbins (1956).

Empirical Bayes methods have been applied in different areas of statistics. Deely (1965)

constructed empirical Bayes subset selection procedures. In a series of papers Gupta

and Liang (1988, 1994) and Gupta, Liang and Rau (1994a, 1994b) have studied different

selection procedures using empirical Bayes approach.

Assume Y are the actual data based on which we wish to make a decision. Then
k

the optimal decision dG depends on the unknown joint distribution G - - Gi of 0 -

(01,..., 00). The central idea of the empirical Bayes approach is the construction of a good

decision rule d* on the basis of historical data Y . The quality of d, is then characterized

by the non-negative random regret risk R, = R(d,, G) - R(dG, G). The aim of the above

mentioned papers dealing with empirical Bayes methods was to construct suitable decision

rules d* and to evaluate the non-random regret risk 1ER*. The main goal of these papers

was to prove the convergence of ER* to zero with a certain rate. Gupta and Liang (1996)

constructed for the problem of selecting good exponential populations a selection rule dn,

and proved JER* = O(n-A/ 2) with same 0 < A < 2.

The natural question is whether there exist other selection procedures which are pos-

sibly better in asymptotic sense. But if ER* = 0(n- 1 ) then a comparison with another
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sequence d, of selection rules would lead to the constants

lim nE[R(d*, G) - R(dG, G)]
n--+o

lim nE[R(dn, G) - R(dG, G)]
n-*oo

which have to be calculated and compared. At least two reasons are against, this argument.

Even if the stochastic order of R* is Op( ),the regret risk ER* may not have the order

O(!) as the values of R* can be large on some events with probability tending to zero.

As these events do not occur in most cases, the random regret risk better reflects the

situation in which the empirical Bayes methods are applied. These methods behave better

than indicated by the order of the regret risk ER*. The situation is comparable with

the asymptotic theory of parameter estimation where different types of estimators are

compared by the limit distribution of V/'i(On - Oo) and in general not by a direct evaluation

of the variance of 9n. A second more technical argument is that lim nE[R(d*, G) -
n-*oon

R(dG, G)] can be calculated only in very special situations. So, in this paper we study

distributions instead of expectations. A new selection rule d, for the problem of selecting

a good exponential distribution is introduced by a modification of the Gupta, Liang rule

(1996). We show

n[R(odn, G) - R(dG, G)]

converges in distributions to a linear combination of independent X2 -distributed random

variables each with one degree of freedom. The coefficients in the linear combination

are explicitly calculated. The main idea for the new selection rule is the fact that the

construction of the optimal selection rule dG needs only the value of a unique zero 7ijo of

some function Hi which depends on Gi. The main part of this paper is the construction

of a suitable estimator ij, for jio and the proof of a limit theorem for v/i(iin - Tio).

2. Formulation of the Selection Problem

Consider k independent exponential populations rl,, - -,irk which we assumed to

have the density functions h(xi 10) = I(xi _ 0) -exp{-x.}, i = 1,...,k, where 0 -

(01,..., Ok)6fQ = (0, co)k and I(A) is the indicator function of the set A. Given a standard

value 00 > 0 we call a population irj good if 0j _> 00. Our aim is to select all good popu-

lations. Therefore the decision space is D = {0, 1}k = {(al,..., ak) : ajE{0, 1}} and ri is
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selected if and only if ai = 1. Similar as in Gupta, Liang (1996), Gupta, Liang (1994) we

use the loss function
k

L(e,a) f Z (0j, ai)

where

f(0j, aj) = a Oi(Oo - 9j)I(0 < Oi < 0o) + (1 - aj) O( A - 0o)I(o < 00)

By a selection rule d = (a,,..., ak) we shall mean a measurable mapping of the sample

space y (0, = 0 )k into the decision space D. If we have a measurement Yj from each

population 7ri then the risk of the selection rule d is given by

R(2, d) = EL(_, d(Y))

where Y = (Y1, ... , ) In terms of densities the risk R(2, d) is also given by

R(O, d) = JL(e,d(y))h(y, 9)dy

k
where h(y[) = 1- h(y IOj) and dy = dy1,... dyk.

Using the loss function (2.1) we get

k

(2.1) R(O_), d) I-PE (0, q (Yi))

where

(2.2) qi(Yi) = ]Eai(Y 1 , . . . , Yi- yi, Yi+ ... , Yk)

The formula (2.1) shows that due to the special structure of the loss function we may

restrict ourselves to randomized decisions qj which depend on the data of 1ri only. Further

0o

(2.3) F-1 (0j,q (Yi)) = J qi(yi) (00 -Of) e-dyi +Ci (0j)

0

where Cj(Oj) = O0(O - 00)1(Oi >_ 0o). As we will apply the Bayes and the empirical Bayes

approach to the selection problem we assume that the 0i are realizations of independent

random variables e9. The ei are assumed to take values in (0, oc) and have distribution
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Gi. The distribution G of the random vector e = (e 1,..., ek) is then the product of the

Gi. Furthermore h(yj0) is the conditional density of Y given E = 0.

We suppose 00
(2.4) 02 dGa(Oj) < 00, i= 1,...,k

Then the Bayes risk is finite and given by

R(G, d) = EL(e), d(Y))

Using (2.3) we get

k o 0

R(G, d) f zj i~ q(yi) (Oo - 9j) e -TY dG (0j) dyi + '-'i
iJ=

where

S= f O9(Oj - Oo)dGi(oi).

As in Gupta, Liang (1996) one obtains by integration by parts

(0o - Oi)e-T = (Oo + Yi - ti)-.e OT dti
fyi Oj

and

f(Oo - 9j)e- dGi(O0) = i(Yi) - 2i(Yi)

where

(2.5) Vfi j (Yi) = f e -idGi(o),

= f f e-e-dti dGi(O) = E(Yj > yi)

0O 0 Y i

(2.6) Vbi 2 (Yi) = j Oie-T dGi(0),

fo~f0 1_t2
= f i(ti - yi)-e ti dtidCi(Oi)

= E(Yj - yi)I(Yi > yi)
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Using these relations we obtain

R(G,d) = (00oi1(yi)-Oi2(yi))qi(yi)dyi + -i

where -yj is independent of the selection procedure. This shows that inf R(G, d) is attained
d

by the selection rule do = (do, ... , do) where

(2.7) {~y~ =(2.7)d9O(yi) = 1 if 0o0i1(yi) _5 ¢i2(Yi)

0 otherwise

If Gi is nondegenerate then 0'2 is strictly increasing. This means that the zero oi0 of

0o0il - Oi2, if there is any, is uniquely determined. To apply the selection rule do we have

to know the qio. But the 01i, 02i as well as qio include the unknown prior distribution.

Otherwise the unknown uil, Oi2 are the expectation of some functions of the observable

data Yi. This is the key to apply empirical Bayes methods. Assume we have data from the

past which can be taken into consideration. More precisely let Y/1, ... , Yin, i = 1, ... , k be

n i.i.d. random variables with density

fi(Yi) = j 0-e- dGi(Oi )

The relations (2.5) and (2.6) show that

(2.) 1 n

(2.8) Hli.(y) = n- E(00 + y - Yii)I(Yie > y)
e=1

is an unbiased and consistent estimator for the unknown function Hi(y) = 0oilj(y) -

Oi2(y). Using this fact Gupta and Liang (1996) introduced an empirical Bayes selection

procedure d* by setting

(2.9) d* (yi) = 1 if Hfi(Yi) _• 0
i 0 otherwise

3. Results

The Bayes risk of the empirical Bayes selection procedure d* is

krc

R(G, d) = E f - O ± 6yj
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The regret risk of the selection procedure is then given by

k

R(G, d') - R(G, do) = E 1E [I(Rih(Yi) :• 0) - I(Hi(yi) •ý 0)]Hi(yi)dyi

Gupta and Liang (1996) studied the rate of convergence to zero of the above nonnegative

difference and proved

R(G,d-) - R(G,do) = O(n-A) for some 0 < A < 2.

In this paper we will study the random part of the regret risk. We will not directly deal

with the decision rule d*. According to (2.7) the essential part of the optimal selection rule
d9 is the zero 77io of the function Hi(y) = OoViu(y) -ji 2(Y) The function ¢• is strictly

increasing if Gi is non-degenerated. To guarantee that Hi has a zero we use the following

Assumption A which was already introduced in Gupta, Liang (1996).

Assumption A: It holds lim ±2ý(Y) < 00 < lim ik'2(Y)
Y.L0 lpii(y) W100O i(Y

If Assumption A is fulfilled and 7/io is the uniquely determined zero of Hi then

Hi(y)>O for y<,/io and Hi(y)<0 for y>/i o.

We will construct a consistent estimator gin for 77io and set

(31)1 Yi>?in

30 otherwise

Put

M (y) = (Hdt)dt

Then the regret risk of d, = (d,1, ... , dnk) is

k

(3.2) E [Mi(7lio) - Mi (•n)] = ER.
i=1

k

where R, = E'•Mi(li(n - Mii(ýio)] is the random regret risk. To prove a limit theorem
i=1

for the random regret risk Rn we need at first a v/-n- consistent estimator Fi, for tio.

As the functions 'in(yi) are discontinuous the estimator for the zero of Hi can not be
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directly introduced as a zero of Hi, (yi) as the existence of such zeroes is unclear. To get

a continuous function we integrate HRi and set

(3.3) Mi.j(yi) = j H (s)ds

As Hrn(s) vanishes for all sufficiently large s we see that Mi,(yi) is constant for all suffi-

ciently large yi. Taking into account the continuity of Min we get the existence of at least

one maximum point, say ijn. From the law of large numbers we get that Hn (s) -- Hi (s)
n-#o+

and Min (y) ---+ Mi (y), where -+ denotes stochastic convergence. From the inclusion
n-*oo

(3.4) {in - (77o EŽ sup Min(Y) Ž Min(io)
ly-17iol>E

one can see that in case of a unique maximum of Mi at 77j 0 and a uniform law of large

numbers, i.e.

sup [iM(y)-Mi(y) I - >0
y n--+oo

the ýin will converge to 7i0- Starting with Wald (1949) this concept to prove consistency

of estimators defined by minimization or maximation procedures have been used by many

authors (see Pfanzagl (1969), Liese, Vajda (1994), van der Vaart, Wellner (1996) and the

references there).

Theorem 1: Suppose Gi is nondegenerate and (2.4) holds. Suppose Assumption A is ful-

filled and FIncE argmax mn, where min and Hin are defined in (3.3) and (2.8), respectively.

Then
P

n-+oo

where 77io is the uniquely determined zero of Hi(y) = 000j, (y) - Oi2(y).

The traditional way to prove asymptotic normality of estimators defined by a mini-

mization procedure is to get an equation for this estimator by taking the derivative. The

next step is a linearization of the obtained equation by Taylor expansion. This approach

fails in our situation as the function Min is not differentiable. But the one sided derivatives

exist. The derivative from the right D+Mi(yi) exists for every yi > 0 and the derivative

from the left D-Min(yj) exists for every yi > 0. If ýin is a maximum point of Min we get

+n ~e
D M n(ýnj) =O ±Y + i - Yu~ie)(ý > ýiiz)n

= •< 0
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and for • > 0

DMin(ýi?2) = - (00 + (&7?n - Y•)I(Yif > •in)

=H.(&. -0) > 0

Note that
0 n

(3.5) D+Mi2(r?) D-Min(&?) = n E •inj)
e=l

If the Yie have continuous distributions then with probability one at most one term in the

sum of the right hand side of (3.5) is nonzero. Denote by Yi(1) < Yi(2) < ... < Yi(.) the

order statistics. If &jn = Yi(r-1 ) then for Yi(r-1) < Y < Yi(r)

+ ( = ( Oo +Y - Y v,)I(Y ie > y)D+Mi.(Y) = n E 0 uYt>Y

n
i n T O+Y-ym

9=r

n
> n E(00 ± Yi(r-1) - yive))

>D+Mij(Yi(r_1)) > 0

which contradicts the maximum property of &n. Hence on the event {fjn > 0} the right

hand term in (3.5) is a.s. zero. Consequently

(3.6) Hi.(ýi.)I(&n > 0) = 0 a.s.

The function Hlin(y) is discontinuous. This excludes a linearization of (3.6) by Taylor
expansion. But for large n we have H(y) • EHj1 = 9 0¢i1 (y)-'p 2(y). As 9Obi (Y)-'i2(Y)

is smooth we will be able to derive an asymptotic linearization. The idea of an asymptotic

linearization goes back to Pollard (1990) and was systematically used in Jure~kova and

Sen (1996) to deal with regression models.

Denote by the variance of the r.v.X by V(X). Using integration by parts one can

show that (2.4) implies EYi2 < c. We set

(3.7) 2 = V((9o + r77o - YiA)I(Yie _ lo))

9



Denote by N(,u, 0.2) the distribution with expectation y and variance or2.

Theorem 2: Assume the conditions in Theorem 1 are fulfilled and it holds

(3.8) bi -[OoP'h(MO) - 4'2(?7io)] > 0

then
d/-n(ri ico) - N(O, a 2lb2)- 7 o n -- oio / b •

d

where -- + denotes convergence in distributions.

Now we apply Theorem 2 to evaluate the random part Rn in the regret risk ERn. It
holds

k

R, = E[Mi(7io)- Mi(-in)]
i=1

Note that M'(77io) = 0 and by assumption (3.8) -Mi'(,qio) = -Hi(77io) = bi > 0. Hence

by Theorem 2

k

(3.9) nRn = •(ýin - i +o)2 [bi ± op(1)]
i=1

Let £(X) denote the distribution of the random variables X. We denote by X2,. X2

i.i.d. random variables whose common distribution is a x-2_ distribution with one degree

of freedom. Then we get from (3.9) Theorem 2 and the Slutzky theorem the following

result.

Theorem 3: If the assumptions in Theorem 2 are fulfilled, din is defined in (3.1) and

k 00 k c

lin j Yi Hi - j d' (yi) Hi(y2) dy

is the random part in the regret risk (3.2), then

k 2

n--+o 2b2

10



4. Proofs:

As Gi is nondegenerate, the function ¢i2 continuous and is strictly increasing. Hence
Oi1

by Assumption A the function Hi (y) has a uniquely determined zero 7?io and the following

holds

Hi(y) > 0 for y <rjio and Hi(y) < 0 for y > 77jo

Consequently

Mi(y) = Hi (s)ds

has a uniquely determined maximum of y = 7o. If we know that Min converges uniformly

to Mi then we will expect that the maximum points of Min being the in will tend to the

minimum point ?7o of Mi. More precisely

{I qin - 77iol > E} c { sup Min(Y) _ Min(7io)}
OY:--1?io[>E

(4.1)
c { sup (M (y)- Min(io)) 0 O}

Y:Iy-77-ioI>E

Also
sup (Min(y)- Min (?io)) <

y:Iy--7lioI>E

sup (ML(y)-MM(iio))+2 sup jMi(y)-Mi(y)I
y:Iy---7ioI>E Oy<•

We set

(4.2) E= sup (Mi(-io) - Mi(y))

y:Iy-uhio1>6

and note that J, > 0 as Mi is strictly increasing for y < 7mio and strictly decreasing for

y > 7mio. The inclusion (4.1) implies

(4.3) {I qin - r7iol > 61 E_ { sup ]Min(y) - M I(y)l > -5}
O<y<oo 2

which shows that a uniform law of large numbers implies the consistency of n-.

Lemma 1. Assume Gi is nondegenerate and it holds (2.4) and Assumption A. If Mi.

is defined by (3.3) and &7 en argmax A/Iin then

-. d

11n + 7i0
n1+0



Proof- Note that

Min (y) = Mi.n(s)ds

(4.4) n ±(0o + s Yiu)I(Yi > s)ds

n
T Z(Yit A Y) (Oo - Yjt + - YtA Y))

n 2t=-1

where Yij A y = min(Yit, y). Consequently

Min(oo) = lim Min(y)
y-400

n
-ý Yi A~( - ~Yit)

n=1

and

E sup I in(y) - R.(00)1 <
T<y<oo

n

I:[E sup OoI(YjtAy)-Yjt±+E sup Yiet(YieAy)-Yijj"
n = T<y<co T<y<c~o

+ E sup 1IYjtA iy
T~y<cc 2

1n

n -E[E Oo(Yit - T)I(Yie _ T) + E Yit(Yie - T)I(Yie _ T)
t=1

+ - E(Yit - T 2 )I(Yje Ž T)]

(4.5) = 00E(Yi1 - T)I(Y{1 > T) + EYj1 (Yi1 - T)I(Y•i Ž T)

+ IE(yi2 -2)I-(yil T)

y22

The assumption (2.4) implies EY i < oo and the theorem of Lebesgue yields that

(4.6) lim E sup M in(y) - ffin(oo) 1= lim AT 0
T-+o T<y<oc

12



Now we study M•n(y) for 0 < y < T where T > 0 is fixed. It holds

A A y+h_

iM,.(y + h) - Min(y) I Min(s)ds

_f -h n e ho + s Y- Y I I(Y) > s)ds

1n

h- E(Oo + (Yi + h) + Yi)
n

i= 1

Hence

(4.7) E sup Mhin (y + h) - Mi.(y) 1• h(Oo + h) + hEYin
y,h:Oy:_y+hT

For any function f : [0, T] -- + (-co, +oo) we denote by wf(h) the modul of continuity

defined by

wf,T(h) = sup I f(y + h) - f(y)
y,h:O<y<y+h<T

Then for every n = 1, 2,...

Tk)MiTk)

sup IMi.(y) - Mi(y) I< max IM. (-) - M((-)
O<y<T O<k<m m m

-+ W ,ý in,T ( T ) -'[- M i,T ( -m

T T

Hence

m T Tk
E sup i-n (Y) Mi(y) I • .E I Min (-) -)

(4.8) O<y•T k=O W W

T T+ Fw ,T(T) + FWMi.T (T)
13 inT m

13



and by (4.7), (4.8)

E sup Mi.,(y)- Mi(y)I< E sup i ,(yY)- Mi(y)Y)
O<_y<_oo O<T

+E sup I Min(Y)-MMi(00)I
T<y<oo

+ EMin(oo)- Mi.(oo) I

+ sup IMi(y)- Mi(0))I
T<y<oo

_ -• Tk Tk

<EE I m Mi(M)
k=O

T T T
+ -(Or + -) + -TEyi

WMi,T( ) + AT + E I MRi(oo) - Mi(oo)

Given a > 0 we may choose To such that by (4.6)

(4.9) AT, < O

Then we fix mo such that

(41)TO TO T0
(4.10) (00 +L(Oo+- ) + - E Yinl+ WM,To < -

"Mo mo mo mo 3

Here we have used that Mi is uniformly continuous on [0, To]. By the law of large numbers

we find no such that for every n > no

mo •-o~ooT - M•(-o) ±I+E M~n(o) •o- M•(oo) <
(4.11) LE 3I An(-)-

k=0 OM

The combination of (4.9), (4.10), (4.11) yields

E sup I Mi (y)- M(y)I<
O<y<oc

for every n > no. This yields

P({ sup IMTn(y)-Mi(y)I> 1, --
O<Y02 

-

14



which implies the consistency of 4j, in view of (4.3).

The classical method to deal with consistent estimators which fulfill an equation is the

linearization of the equation by Taylor expansion. However this technique is not applicable

to (3.6) as the corresponding functions are not differentiable. They are even not continuous.

We will use another approach and derive a more implicit representation by a stochastic

process. To prepare this representation of ýjin, we need some technical lemmas. The first

is the result of straight forward calculations.

Lemma 2: Let (Ui, Vi), i = 1,..., n be i.i.d. random vectors with EU2 < 00, EV/2 < c<

and EU= EVi =O. Then

IE-~ Uk)2(- V)= v~ Z(U)V2 )2n 7n(:-E(Ek)(~
k=1 ==I k1=

(4.12) +2E(EUk Vk) (EUf VR) + -- EU2 V1
2

koe _=1

< 3(n - 1) (EU2)(EV1
2) + £EU2 V12

n n

Set

(4.13) Aij(s) = (0 ± s - Yij)I(Yij > s)

We fix 0 < a < b < oo and consider the stochastic processes Aij (s) in [a, b]. It holds for

a<s<t<b

(4.14) Aij(t) - Aij(s) = (Yij - 0 0 - s)I(s < Yij <_ t) + (t - s)I(Yij > t)

Hence by (a + 0)2 < 2(a2 +±32)

E[(Aij (t) - EAdj (t)) - (Aij(s) - EAdj (8))]2 < E(Aij (t) - dij(S))2

(4.15)

•_ 2[Oo + 2b) 2 (Fi(t) - Fi(s)) + (t - s)]

where Fi is the c.d.f. of Yij,j = 1,...,n.
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Furthermore for a < s < t < u < b

(Aij)(t) - Aij(s))(Aij(u) - Aij(t))

=[Yj- 00 - S)I(S < Yij •:ý t) + (t - S)I(Yjj > t)].

=t- S)Yj- 00- t)I(t < Yi • U)

+ (t - S)(u - t)I(Yi3 > u)

Using again (a~ + /0)2 < 2 (a 2 + /32) we obtain for any rxv X, Y with finite fourth moment

E,(X _ IEX) 2 (y _ IEY) 2 < 41E(X 2 + (EX) 2 )(Y 2 + (EY) 2 )

< 4(EX 2Y 2 + (EX) 2 EY 2 + (EY) 2EX 2 + (EX) 2 (EY) 2) K! 16EX2Y 2

Putting
X= (t - S)Yj- 0 0 - t)I(t < Yi3 < u)

Y = (t - S)(u - t)I(Yi3 > U)

we arrive at

IE[(Aij (t) - EAjj (t)) - (Aij (s) - EAjj (8))] 2 [(Aij (u) - IEAjj (u)) - (Aij (t) _ EA~j (t))] 2

• 1 IEt -S)
2[(y~j _ 00 _ t)I(t < y~j < U) ± (U _ t)I(y 3 Ž)]

•16 (t _ S)22(Yi -0 _o t)21(t <F((i Yj < U) + (U - 0)2 )

(4.16) •16(t - S)2 2((Oo + 2b) 2 + b 2)

Recall that Yi has the density

fi (Yi)=J e -0dGi (0i)

We introduce the continuous nondecreasing function Ki (t), a < t < b, by

(4.17) Ki (t) = fj D(fi(s) ± I) ds

where D = 32(Oo + 2b) 2 + b 2 + 2 Then by (4.15) and (4.16)

(4.18) EV[Aij (t) - ]EAjj (t)) - (Aij (s) - IEAjj (S))]12 < K, (t) _ K, (8)

16



E[(Aij (t) - EA~j (t)) - (Aij(s) - EAjj (s))]2 [(Aij(u) - EAjj (u))(Aij(t) - EAij (t))]2

(4.19) < (K,(t) - 2.

Introduce Win(t), a < t < b, by

1 nt

Win(t) 7= - EAij (t))
j=1

Then by the definition of Hin(t) and Hi(t), we have

(4.20) Win (t) = vl (Hin (t) - Hi (t))

For fixed a < s < t < u < b we apply Lemma 2 to

U3 = (Aij(t) - EAdj (t)) - (Aij(s) - EEAdj(s))

Vj = (Aij(u) - EAjj (u)) - (Aij (t) - EAjj (t))

to get

E[(Win (t) - Win (s))(Win (U) - Win(t))] 2 < 3(n- 1)EUV12 + IEU2V12n n

The application of the inequalities (4.18), (4.19) to right hand terms yields

(4.21) E[(Win(t) - Win(s))(WinV(u) - Win(t))] 2 < 3(Ki(u) - Ki(s))2

We have also to deal with the fourth moments of the process Win. To this end we use the

following well known formula for the fourth moment of a sum of i.i.d. random variables.

Lemma 3: Let Z1,...,Zn be i.i.d. random variables with EZj = 0, u2  EZ2 and

14 = EZ4 < oo. Then

n )4 3 n lU4 + .
i=1

Now we set

Zij = (Aij(t) - EAdj (t)) - (Aij(s) - EAjj (s))

and note that by (4.18)

02 = 1EZ~j~ • K1(t) - Ki(s)

17



The representation (4.14) shows that the r.v. Zjj are bounded

Z j <4(b- a + Oo)

Hence

A4 • (4(b- a + Oo)) 2 92

and with d= (4(b-a +00)) 2

1A4 < d(Ki(t) - Ki(s))

If we now apply Lemma 3 to Win then

(4.22) E(Wi,(t) - Wi,(s))4 < 3(Ki(t) - K,(s)) 2 + d (Ki(t) - Ki(s))
n

Recall that the model of continuity wf(h) of a function of [a, b] is defined by

wf(h) = sup I (f(t + h)- f(t)
a<t<t+h<b

For the proof of the next lemma we refer to Shorack and Wellner (1986), p. 49. Suppose

Z(t), 0, < t < 1 is a stochastic process for which every path is continuous from right and

has limits from the left.

Lemma 4: Assume there is a continuous nondecreasing function K on [0, 1] such that

(4.23) E(Z(t) - Z(s)) 2 (Z(u) - Z(t))2 < (K(u)- K(t))2

for every 0 < s < t < u < 1. Then there is a universal constant c such that

1 1 m k k-iP(Wz() -> E) <5 T4 E(Z( M )- Z( )

(4.24) k=1

c(K(1) - K(0)) 1
÷ (E4

To apply Lemma 4 to Win we set

Z(t) = Win(a + t(b - a))

K(t) = v3Ki(a + t8(b - a))

18



In view of (4.21) the condition (4.23) is fulfilled. Note that by the definition of Z and

inequality (4.22)

m k~

E(Z k Z(kl1))4

m< 3(Ki (a + (b - a) k)- - Ki(a+ (b - a)(k- 1)))2 + d K( b)
k=1 1.

b-a d

< (3w.(b ) + d)Ki(b)
m n

Consequently by (4.24)
.b-a) (3+c b-a d

(4.25) P(wwin( m a 3 + c - i Ž(b ) + d () Ki (b)

Now we are ready to prove an asymptotic representation for the estimator .in-

Lemma 5: Under the assumptions of Theorem 2 it holds

Vn Hi (Mn) =- Win(77io) + Pn

where Pn -- + 0.
fl-+00

Proof:

Fix 0 < a < 77io < b < co. Then by the consistency of ýi, we get P(•ine[a, b]) -+ 1. If
n--+o

7ine[a, b] then by (3.6) and (4.20)

0 = (ý,n) Vn

= Win (M) + V/ Hi( M)

= Win (77o) + Vrn Hi(7-7.) + (Win( Rn) - Win (77o))

Introduce
CmIn = sup _wXn(t)- w- .(7o)l

Dm -- 7io 1:5 "- b

D n = {A .•- 7io I __ b1 a9

19



Then

I(Dmn)[Win(7Ti 0 ) + V/ Hi( n) + (Win( n) - Win(?7iO))] = 0

or

Win (Mo) + vn Hi(ýin) = PIn + P2n

where
Pin = I(-Dmn)[Win (qiO) + V/ Hi(ýin)]

P2n = I(Dmn))(Win(,in) - Win (Mo)
P .

To show Pin -- + 0 it suffices to remark that by the consistency of iun:
n-+oo

P(D-mn) -- + 0
n---•o

But by (4.25)

P(Ip 2nI > E) _< P(Ww._ (b ) b a )

,3+c b-a d< --ý4-w••-- + -) Ki(b)

As Ki is continuous we see WK, (0) __ 0. Taking at first n -+ oo and then m -+ oo we
m-+0o

see that

P(IP2n I >) -> 0
n-+oo

Hence Pin + P2n -+ 0 which proves the statement.
nf--+00

Proof of Theorem 2: As Hi(ruio) = 0 and Hi(y) = 00 bi, (y) - Vbin(y)

is differentiable at y = ruio we obtain from the consistency of ýin and Lemma 5

vn (ýn - Mo)(H'(7uo) + Sn) = -Wn(iio) + pn

where both Sn and Pn tend stochastically to zero. By the central limit theorem the

distribution of Win(rnio) tends to N(0, o2) as n -+ cc. The application of the Slutzky

Lemma yields the statement.
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